СТРОИТЕЛЬНЫЙ МАТЕРИАЛ ПЧЕЛ


Высокие требования пчелиного ГОСТа.

Молекулярная оркестровка воска. 

Совмещение несовместимого.

У растений главные строительные материалы - целлюлоза и лигнин. Оба полимера строятся па молекулярной основе по четкому генетическому плану. Так же формируется и тело любого другого организма,

в том числе и медоносной пчелы. Однако превратившись во взрослую особь, пчела вновь оказывается вовлеченной в созидательные работы. На этот раз она уже активный, а не пассивный объект, над которым работают силы природы, формируя ее совершенный облик. Пчела, прожив 1-2 недели в улье, превращается в пчелу-строительницу, способную и выделять строительный материал и возводить из него постройки.

Разумеется, пчела уже не может оперировать отдельными молекулами, произошел качественный скачок в масштабах-, да и механизмах действия, и объектом трудовых усилий стала объединенная масса молекул - вещество. Мы уже упоминали, что его свойства резко отличны от свойств самих молекул. Вещество проявляет в некотором роде стадные, или популяционные, свойства, столь ярко выражаемые в явлениях кристаллизации. Так, оно уже более инертно, лениво и требует поэтому более жестких методов обработки, включая термические, чем подвижные индивидуальности - отдельные молекулы.

Каким же требованиям должен удовлетворять строительный материал, вырабатываемый пчелами для их совместных построек?

Ранее мы писали, что у пчел совершенное с геометрической и технологической точек зрения решение строительной проблемы. Об этом уже знал Иоганн Кенлер, исследовавший универсальные проявления формообразующей силы, которая, как он считал, свойственна любому веществу. В применении к постройкам пчел он оказался гениально точен в своих выводах и предвидениях.

Напомним главные из них. Ячеистая ромбическая структура сота по сравнению с другими возможными вариантами оказалась наиболее экономичной по расходу материала, вместимости, прочности при заданных в улье условиях жизни, которые меняются в достаточно тонких пределах: температура вблизи сотов скачет от десятков градусов ниже нуля в зимнее время до 35-37 градусов в период, когда пчелы приступают к выращиванию личинок и действует пчелиный кондиционер .

И все-таки нужен был материал, свойства которого позволяли бы как возводить эти идеальные постройки, так и удерживать выбранную форму при складывающихся в улье условиях.

Очевидно, что это должен быть совершенно необычный материал. Из своей практики мы знаем, что большинство искусственных материалов, используемых нами при возведении домов, изготовлении машин, домашней посуды и других предметов, обретает форму в результате предварительной термической либо химической обработки, причем температура расплавления или размягчения бывает очень высокой, до тысячи градусов. Кристаллическая решетка обрабатываемого металла в этих условиях рушится, и молекулы начинают скользить одна относительно другой, обеспечивая гибкость и податливость всей массы вещества. Еще более высокая температура нужна для выплавки самого металла, получения фарфора, обжига керамики и т. д.

Естественно, что такой термический способ пчелам не подходил. Химический же путь получения прочного строительного материала- не редкость в природе. Так, американские исследователи установили, что живущие в земле одиночные пчелы-коллеты употребляют для закрепления легко обсыпающихся стенок своих жилищ... полиэфирную пластмассу. Отвердевание выделяемой их железами жидкой первоосновы происходит при контакте с кислородом воздуха. Поскольку такой линейный полиэфир в природе обнаружен впервые, исследователи не преминули бросить камешек в огород своего вида, заметив, что люди сумели разработать технологию получения этого полимера лишь примерно четверть века тому назад.

Изоляция норки коллеты полиэфирным лаком позволяет дольше сохраняться запасам пыльцы и нектара, которые насекомое оставляет вблизи яйца в качестве корма будущей личинке.

Если тайна коллет скрывается под земельным бугорком, то пауки свои строительные достижения демонстрируют открыто: они вырабатывают быстро отвердевающий прочный материал для сооружения гнезд и ловчих сетей.

В принципе все насекомые, личинки которых прядут коконы, способны изготовлять такие прочные биополимеры. За примерами далеко ходить не надо: вся наша шелковая промышленность основана на подобной активности личинок тутового шелкопряда!

Поразительно интересный пример использования отвердевающего материала дают нам муравьи экофилла, которые устраивают свои небольшие гнезда в свернутых листьях. Когда лист общими усилиями нескольких муравьев нужным образом скручен и стянут, один из таких зодчих отправляется за своим юным собратом, еще пребывающим в стадии личинки, начавшей выделять полимеризующуюся жидкость. Принеся личинку, муравей начинает орудовать ею как челноком, прочно зашивая моментально твердеющей нитью всю зеленую конструкцию.

Прядут коконы и личинки медоносных пчел. Однако такой необратимый затвердевающий биополимер для строительства сот пчелам не подошел бы. Во-первых, он крайне затруднил бы сам процесс возведения ромбического сота, требующий постоянных корректировок и исправлений, и, во-вторых, последующую эксплуатацию отстроенного сота.

Большая часть сооружаемых пчелами ячеек служит чанами для переработки нектара в мед и его хранения. На такой службе сот может находиться очень много лет, лишь слегка желтея от времени. Другое -дело - использование тех же ячеек в качестве колыбелек для выращивания-личинок. Здесь срок службы сота недолог. После вызревания личинки и превращения ее во взрослое насекомое (цикл длится для рабочей пчелы, считая от снесенного маткой яичка, 21 день, а для трутня - 24 дня) на стенках ячейки остается плотно прилегающая к нему тонкая рубашечка кокона. Пчелы, в отличие от шмелей, не думающих о будущем, очень тщательно вычищают и вылизывают после от рождения очередной пчелы ячейку, а затем стерилизуют ее, нанося тонкий слой вещества, в котором имеется добавка убивающего микробы прополиса и других биологически активных веществ.

Все это хорошо, но остатки рубашечек коконов и наносимые пчелами вещества-стерилизаторы уменьшают просвет ячейки, что чревато измельчанием потомства. Пчелы в таких случаях не терпят компромисса: решительно сгрызают засклеротированный отходами деторождения сот до основания. Отшлифовав до блеска средостение, они надстраивают его заново, но уже из свеже выделенного воска, соблюдая все строжайшие правила пчелиного ГОСТа .

Это старение сота, особенно в центральной части улья, где при температуре 34-35 градусов горит расплодная печка, происходит довольно быстро: уже за два года такой беспрерывной службы в качестве пчелиного инкубатора сот становится практически черным и не просвечивается, даже если его развернуть плоскостью к лучам солнца. Кроме того, он заметно тяжелеет. Для внимательного к своим пчелам (и доходам) пчеловода это верные знаки к удалению старика -сота из улья.

Понятно, что такую реконструкцию пчелы не могли бы проводить, если бы материал, из которого выстраивался сот, затвердевал наподобие природных или искусственных пластмасс. И это далеко не единственный вид работы, постоянно производимой пчелами в улье, который требует хотя и прочного, но пластичного материала.

Можно еЩе упомянуть и сооружение таких временных построек, как маточники (специальные крупные ячейки для выращивания пчелиных маток), возведение укрепительных восковых перемычек, переделку части сота под более крупные трутневые ячейки, восстановительные работы после повреждений, нанесенных проникшими в гнездо во время зимовки вредителями, например мышами, либо вызванных неосторожными действиями пчеловода во время осмотра гнезда. Во всех этих случаях требуется материал, который можно использовать многократно, легко удаляя и снова приращивая в любой части гнезда.

Как совместить, казалось бы, несовместимое - прочность и пластичность, нужные такому веществу? Мы знаем, что у пчел эта проблема решена - таким материалом у них является воск.

Воск у пчел образуется в особых железах, которые находятся на нижней поверхности брюшка, располагаясь попарно на четырех последних члениках тела. Всего таких желез восемь. Образующийся в них восковых деляется через мельчайшие поры, обрамляющие железы восковых зеркалец, наружу, где и застывает в вид€ небольших чешуек. Они почти невесомы, массой 0,25 миллиграмма каждая. Требуется 50 таких чешуек, чтобы соорудить одну пчелиную ячейку, в килограмме же воска их наберется до 4 миллионов. Когда пчела начинает выделять воск, на поверхности ее брюшка появляются белоснежные края застывающих пластинок. Внешне они чем-то напоминают белую луночку ногтя у нас на пальцах.

Сходство здесь не только внешнее: и воск, и роговидный материал ногтя синтезируются особыми клейками на молекулярном уровне. Работы эти ведутся на автономном управлении, без участия высших отделов мозга, загруженных решением других проблем. Такое невнимание со стороны высших органов, однако, ничуть не сказывается на качестве, которое обеспечивает жестким надзором и контролем на местах . Вывшие отделы пчелиного мозга приступят к выполнению своих прямых обязанностей позже, когда материал будет готов и появится возможность его применением управлять на уровне органов чувств. Им уже придется иметь дело не с отдельными молекулами, а с их массой, поэтому мозг не вмешивается в то, что делают столь совершенно клетки или их ассоциации.

Вот когда молекулярные клеточные фабрики восковых желез, ткущие углеродистые цепи молекул воска, произведут их достаточное количество и избыток вытолкнут наружу, образуя восковую пластинку, тогда пчела-строительница, подхватив ее своими жвалами, продвинется к грозди пчел, занятых очередным сооружением. Там она станет одним из ее многочисленных активных центров и сможет проявить свои способности - оценивать и корректировать на макроскопическом уровне воздвигаемую постройку.

Что же за вещества образуют клетки восковых желез?компонеты пчелиного воска

Всего в воске обнаружено до 300 различных веществ, но большинство из них - в крайне небольших количествах или следах, которые мало влияют на его основные свойства. Эти свойства определяются несколькими количественно преобладающими в воске соединениями.

В их число в первую очередь входят сложные эфиры высших жирных кислот и одноатомных спиртов. Внутри этой группы преобладает мирициловый эфир пальмитиновой кислоты.

Кроме него, воск содержит десятка полтора и других эфпров. Все они образованы соединениями родственной природы: кислотами, имеющими линейную цепочку углеродных атомов с числом звеньев от 16 до 36 и спиртами. Длина последних колеблется в пределах от 24 до 34 групп в каждой молекуле.

В восковых железах, где происходит синтез молекул жирных кислот - первичного материала для образования воска, часть из них подвергается дополнительному превращению: особые ферменты-восстановители (гидрогеназы) выравнивают цепь, конечную карбоксильную группу (СООН) водорода . В результате образуются полностью насыщенные углеводороды. Их фракция в готовом воске значительна: около 15 процентов.

Не все образующиеся в клетках восковых желез кислоты связываются ферментами в эфиры восстанавливаются до углеводородов, существенная часть - около процентов выделяется наружу в свободном состоянии.

Перечисленные группы соединений и формируют основной физико-химический облик строительного материала пчел.

Однако ничто не ново в этом мире: различные типы воска продуцируют и другие насекомые, а главное, эти вещества - почти непременный компонент покрытий семян, плодов и даже зеленых листьев растений. Соединения, которые образуют воск на листьях и плодах растений, играют защитную роль: предохраняют более мягкие и нежные нижележащие ткани от окисления воздухом, потери влаги либо ее избыточного поступления, а также токсических веществ: пыли, механических повреждений и тому подобных неблагоприятных проявлений со стороны окружающей среды. Особо важная роль этого покрытия - продлевать покой и сохранность генеративных и переживающих органов: плодов, семян, корнеплодов, которые и составляют большую часть запасаемого нами урожая растений.

Когда химики узнали о биологических функциях воскообразных веществ в природе, они стали специальные рецепты для обработки плодов, чтобы как можно сохранить их привлекательность и качество.

Интересна с этой точки зрения история одного из компонентов пчелиного воска - триаконтанола. Несколько лет назад ему было уделено очень много внимания. Этот спирт, а также углеводород гентриаконтан (суммарная формула С31Н64) были обнаружены на листьях люцерны н других растений. Триаконтанол проявлял важное свойство: нанесенный на растения даже в небольших количествах, он заметно повышал урожай разных видов культур.

О подобном свойстве экстрактов пчелиного воска Знали раньше и пчеловоды, не всегда склонные рекламировать свои секреты. Жидкостью, остающейся после вываривания старых сотов в воде, они поливали припасечные растения. И всегда наблюдали прекрасный эффект! Возможно, что дело не только в триаконтаноле, но химический анализ подтвердил, что в пчелином воске постоянно содержится значительное количество именно этого жирного спирта. Непонятно, однако, почему другие, очень близкие по химической природе спирты, присутствующие в восках, не обладают такими же биологическими свойствами.

Интересно отметить присутствие в воске холестериновых спиртов, а также 3-ситостерина. Если молекулы холестерина могут с большим успехом синтезировать и клетки животного организма, что мы опознаем по множащимся случаям заболевания атеросклерозом, то молекулы р-ситостерина изготовляются лишь в растениях. Присутствие ситостерина в воске, произведенном животным - пчелой, не способным на синтез этого вещества, показывает, что клетки восковых желез насыщенные липофильными веществами, к которым относится и ситостерип, отлавливают его из омывающего их питательного раствора гемолимфы. Сам ситостерин неизбежно попадает в кроветок насекомого при потреблении и переваривании пыльцы, очень богатой веществами подобного типа.

Так, растение оказывается прямо причастно к тем 300 соединениям, которые формируют химический букет воска. Очевидно, что в незначительных деталях он будет каждый раз в чем-то неповторим, так как стол пчелы изменчив, а флора и погода непостоянны.

Итак, соединения того типа, что встречаются в воске, могут синтезировать и другие организмы. Отличие пчелы в том, что у нее сформировались специальные высокопродуктивные железы, производящие оптимальную по соотношению компонентов смесь для нужд семьи.

В воске преобладает лишь 3-4 типа основных соединений, но их сопровождает большая бахрома других. Поскольку каждая клетка химически всесильна, трудно предположить, что железы пчелы не обладали ресурсом доспециализироваться до производства более узкой по составу смеси. В этом случае, однако, мог бы неблагоприятно проявиться изначальный характер молекул, который воспрепятствовал бы достижению важнейшего качества воска - его. пластичности. Действительно, если бы воск был представлен двумя-тремя соединениями, как, например, мед, то рано или поздно молекулы этих веществ, обнаруживая друг друга, стали бы образовывать кристаллические узоры. Там, где появляются кристаллы, кончается всякая пластичность, а это не только не добавило бы красоты пчелиному строению, но и разрушило бы его.

Пчелиный воск, конечно, обретает хрупкость при пониженных температурах, когда движение молекул замедляется и они проявляют склонность сцепливаться одна с другой. Однако эти же молекулы, имея длинные жирные хвосты, начинают легко плыть при повышенных температурах, смещаясь относительно друг друга, грозя превратить ажурное пчелиное строение в бесформенную массу.

Пчелы, безусловно, осведомлены о свойствах своего строительного материала. Являясь прекрасными специалистами по кондиционированию среды обитания, они не только не идут навстречу этим устремлениям дышащего различными наклонностями в их материале микромира, но и решительно препятствуют им, выдерживая температуру в ульях в строго заданных параметрах, и принимают другие нужные меры предосторожности.

Оставить свой отзыв - мнение или совет:


   

Книги отцов - опыт дедов  

   

Поиск по библиотеке:  

   

Все статьи данной книги:

  1. ПРЕДИСЛОВИЕ Поправке С. А.
  2. АЗБУКА ЭКОЛОГИИ
  3. ПРИРУЧЕНИЕ СТРОПТИВЫХ
  4. СЛАДКИЙ И ГОРЬКИЙ ПРЯНИК ДРЕССИРОВКИ
  5. ЭКОЛОГИЧЕСКИЕ БЕДЫ АНТРОПОГЕННОГО ВЕКА
  6. БОРЬБА ИЛИ СОТРУДНИЧЕСТВО?
  7. В ПОИСКАХ МАГИЧЕСКОЙ ФОРМУЛЫ ИСТОКИ ГАРМОНИИ
  8. КРИСТАЛЛЫ
  9. СЕЗОННАЯ КОСМЕТИКА РАСТЕНИЙ
  10. СТРОИТЕЛЬНАЯ ИНДУСТРИЯ РАСТЕНИЙ И ПЧЕЛ
  11. ТРУДНЫЙ ОРЕШЕК - ЛИГНИН
  12. СТРОИТЕЛЬНЫЙ МАТЕРИАЛ ПЧЕЛ
  13. ЗОЛОТОЙ ФОНД ПАСЕК
  14. ТАЙНЫ СОТОВОГО МЕДА
  15. ВОСК И КУЛЬТУРНОЕ НАСЛЕДИЕ
  16. ВРЕДИТЕЛИ ВОСКОВЫХ ПОСТРОЕК
  17. ЗИМНЯЯ УПАКОВКА ПЧЕЛИНОГО РОЯ
  18. ТРОЙСТВЕННЫЕ УРАВНЕНИЯ ЗИМУЮЩЕЙ СЕМЬИ
  19. ВЫБОР ЖИЛИЩА
  20. ПИЩА ПЧЕЛ ДИАЛЕКТИКА МЕДОСБОРА
  21. РАСТЕНИЯ ПРИНИМАЮТ ВЫЗОВ
  22. ОБОРОННАЯ СТРАТЕГИЯ РАСТЕНИЙ ЗЕЛЕНЫЕ МИСТИФИКАТОРЫ И ДЕЗИНФОРМАТОРЫ
  23. САМООЧИЩЕНИЕ БИОЦЕНОЗА
  24. ГАЛАНТНОСТЬ РАСТЕНИЙ
  25. РАСТЕНИЯ И ПЧЕЛЫ В АНТРОПОГЕННЫЙ ВЕК
  26. ПРАКТИЧЕСКАЯ ОЦЕНКА БИОТЕХНОЛОГИИ ОБЩЕСТВЕННЫХ НАСЕКОМЫХ
  27. АГРОПРОМЫШЛЕННЫЙ КОМПЛЕКС В МУРАВЬИНОМ РАКУРСЕ
  28. СПАСИТЕЛЬНАЯ МИССИЯ САХАРОЗЫ
  29. ПОВЕДЕНИЕ ПЧЕЛ ВЛАСТНЫЙ ЯЗЫК ПОПУЛЯЦИЙ
  30. МАНЯЩИЕ ОГНИ СОЦИАЛЬНОСТИ
  31. МУЗЫКАЛЬНАЯ ШКАТУЛКА ИНСТИНКТОВ
  32. ИЗБЕЖАВШИЕ РОКА
  33. ОПТИМИСТИЧЕСКИЙ АККОРД
   
© • Paseka.pp.ru 2010 - 2016 • Энциклопедия пчеловодства - Библиотека пчеловода - книги отцов - опыт дедов • [email protected]